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Abstract: This paper introduces the concept of a thermal dome, a novel thermal management strategy 
that overcomes the limitations of traditional thermal cloaks. The thermal dome is an open-structured 
device designed to manipulate heat conduction, effectively hiding target objects from thermal 
detection regardless of their heat-generating properties. The design approach involves mathematical 
methods to engineer the thermal dome with specific thermal conductivities that match the surrounding 
environment, thus maintaining the background temperature distribution and achieving thermal 
invisibility. The thermal dome's theoretical foundation is based on the Laplace equation, applicable 
to three-dimensional heat conduction scenarios. Verification of the thermal dome's functionality is 
conducted through finite-element simulations using COMSOL Multiphysics. The simulations 
demonstrate that the thermal dome can restore uniform temperature and isotherm distributions when 
an object with different thermal conductivity is introduced. The efficacy of the thermal dome is 
further analysed under different external temperature conditions, showing its robustness and 
adaptability. We also explore the thermal dome's performance under varying background thermal 
conductivities, utilizing effective medium theory to modify the dome's conductivity. The thermal 
dome presents a versatile and customizable solution for thermal management, with potential 
applications in military stealth, energy efficiency, and temperature monitoring. 

1. Introduction 
Heat conduction is the main form of heat transfer. In recent years, researchers have achieved many 

important achievements in the manipulation of heat conduction [1–3]. At the macroscale, researchers 
have designed various structures to achieve several functions, namely thermal cloak, thermal 
concentrator and thermal rotator [2,4–11]. At the microscale, based on phonon transport and 
scattering, devices like thermal transistor, thermal diode, thermal logic gates and thermal memory 
have become a reality [12–15]. Heat is also treated as an information carrier, which is utilized in 
communication, detection, anti-detection, and calculations [16–19]. To confront infrared detection, 
the concept of thermal invisibility has garnered significant attention due to its potential applications 
in various fields, such as military stealth, energy efficiency, and temperature monitoring [20,21]. 

Traditionally, thermal cloaks were designed by using thermally insulating materials to envelop the 
target, and then guiding the heat flow encompassment the cloaked region, thus achieving invisibility 
[16,21,22]. Various theories have been developed following this approach, such as transformation 
thermotics, scattering-cancellation, topology-optimization and machine learning [3,7–10,23–28]. Xu 
et.al designed a kind of bilayer cloak, which took geometrically anisotropic cases into consideration 
[22]. Ji et.al established an artificial network to design the properties of the thermal cloaks [25]. Sha 
et.al demonstrated topological functional cells (TFCs) to optimize thermal metamaterials traversing 
full-parameter anisotropic space [29]. Shen et.al experimentally fabricate a kind of thermal 
metamaterials, which can automatically change from a cloak (or concentrator) to a concentrator (or 
cloak) when the environmental temperature changes [11]. 

However, those cloaks have some inherent defects. Some of them require extreme properties, and 
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most of the thermal cloaks fail to cope with different environments. In addition, they also base at 
closed and invariable structures, not allowing the existence of heat source. To address these challenges, 
we developed the novel concept known as the thermal dome. This concept deviates from the 
conventional cloaking methods by utilizing an open structure that not only allows for easy installation 
and convenient variation but also accommodates internal heat sources. The thermal dome is designed 
to manipulate heat conduction in a way that the target object is effectively hidden from thermal 
detection, regardless of its heat-generating capabilities. 

This paper has proposed the mathematical methods to design the thermal dome. The thermal dome 
is engineered to exhibit specific thermal conductivities that match the surrounding environment. This 
match ensures that the temperature distribution within the background remains undisturbed, thereby 
achieving the goal of thermal invisibility. The design of the thermal dome is such that it can be 
reconfigured to adapt to different environmental conditions, making it a versatile solution for various 
engineering applications. 

2. Theories of the thermal dome 
We discuss heat transfer only by heat conduction in the three-dimensional case. In a homogeneous 

matrix with a constant thermal conductivity 𝜆𝜆𝑏𝑏,heat flux would be distorted due to the introduction 
of an object with a different conductivity 𝜆𝜆𝑎𝑎. To solve this problem, a thermal dome can be placed 
above the object, which recovers the temperature field outside and inside the dome. However, the 
dome can be designed in any form, we choose the hemispherical scheme. By changing the radii and 
thicknesses, domes can match various cases. Additionally, it also has excellent symmetry which 
simplifies the arithmetical operation. The heat transfer equation in the spherical coordinate system is 
written as 
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where 𝜌𝜌, 𝑐𝑐, 𝑡𝑡, 𝜆𝜆 are the mass density, heat capacity, time and heat conductivity of the material, 
respectively. 𝑇𝑇 denotes temperature and 𝜙̇𝜙  denotes heat power density. It is presumed that the 
thermal conductivity is isotropic and all other thermal parameters, namely the mass density, specific 
heat capacity, and heat power density, are constants throughout the material. In the absence of heat 
sources, and under steady-state conditions where the temporal evolution of temperature is not 
considered, the governing equation for heat conduction within the material can be simplified to the 
Laplace equation: 
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In alignment with the preceding discourse, the thermal dome has been architected to exhibit 
exemplary performance across a multiplicity of operational contexts. To actualize this objective, a 
duo of essential prerequisites is posited: firstly, the whole surface upon which the foundation of the 
thermal dome is situated must be subject to uniform temperature regulation, ensuring a stable thermal 
boundary condition. Secondly, the interposition of an adiabatic layer between the dome and the core 
region is imperative, which serves to create a thermal barrier. The latter stipulation endows the 
thermal dome with the autonomy to function in isolation from the core region, irrespective of the 
conditions or contents therein. 

By directly solving Laplace equation, the general solution of 𝑇𝑇 can be written as 
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where 𝑎𝑎𝑚𝑚𝑖𝑖  and 𝑏𝑏𝑚𝑚𝑖𝑖   (𝑖𝑖 = 1,2,3,4) are constants to be determined by the boundary conditions and 
𝑇𝑇𝑖𝑖 denotes the temperature in different regions: 𝑖𝑖 = 1 for the core region (𝑟𝑟 < 𝑟𝑟1), 𝑖𝑖 = 2 for the 
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adiabatic layer (𝑟𝑟1 < 𝑟𝑟 < 𝑟𝑟2), 𝑖𝑖 = 3 for the thermal dome (𝑟𝑟2 < 𝑟𝑟 < 𝑟𝑟3), 𝑖𝑖 = 4 for the background 
(𝑟𝑟 > 𝑟𝑟3). 𝑃𝑃𝑚𝑚 is Legendre polynomial. 

A uniform temperature gradient 𝑔𝑔 is applied externally along the 𝑧𝑧 direction. So when 𝑟𝑟 → ∞, 
𝑇𝑇4  tends to 𝑔𝑔𝑔𝑔 cos 𝜃𝜃 , which means 𝑚𝑚 = 1  and 𝑎𝑎14 = 𝑔𝑔 . Considering in the ideal case, the 
temperature gradient is not distorted of the exterior region, so we set 𝑏𝑏14 = 0 Additionally, when 
𝑟𝑟 → 0, 𝑇𝑇1 is limited, from which we can obtain 𝑏𝑏11 = 0. Taking the continuities of temperature and 
heat flux into account, the boundary conditions can be written as 
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Therefore, the conductivity of the dome 𝜆𝜆𝑑𝑑  can be solved as 

𝜆𝜆𝑑𝑑 =
2𝑟𝑟33 + 𝑟𝑟23

2(𝑟𝑟33 − 𝑟𝑟23) 𝜆𝜆𝑏𝑏 

3. Function verification and finite-element simulations 
We use the commercial software COMSOL Multiphysics to do finite-element simulations and 

authenticate our theoretical analyses. We carried out steady-state simulations with the solid heat 
transfer module in three dimensions. The background is dimensioned at 40 × 40 × 20 cm3 and 
its thermal conductivity 𝜆𝜆𝑏𝑏 is 15 W m-1 k-1. An arbitrary object inside a hemispherical region with 
𝑟𝑟1 = 10 cm and thermal conductivity 𝜆𝜆0 = 400 W m-1 k-1 is introduced. The thicknesses of the 
adiabatic layer and thermal dome are 1 cm and 2 cm respectively and we obtain 𝑟𝑟2 = 12 cm and 
𝑟𝑟3 = 13 cm. Therefore, we can set the conductivity of the dome 𝜆𝜆𝑑𝑑 as 98 W m-1 k-1. The adiabatic 
layer features the conductivity 𝜆𝜆𝑎𝑎 = 0.023 W m-1 k-1. The structure is shown in Fig.1. Next, we set 
the temperature of the top surface and bottom surface at 323 K and 273 K respectively and other faces 
of the background are all thermal adiabatic. We examine the efficacy of the thermal dome by 
comparing the temperature field in three distinct groups. 

 
Figure 1: A schematic cross-sectional representation of the thermal dome. 

As depicted in Fig.2, the temperature field and isotherm distributions are perturbed by the core 
region due to the difference between the core and the background. Obviously, after introducing the 
thermal dome, with an adiabatic layer, a uniform temperature and isotherm distributions reappear, 
precisely matching those of the pure background without the object. Due to the insulation caused by 
the adiabatic layer and the stabilization of the subface temperature, the temperature of core region 
keeps homogeneous and constant. 
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Figure 2: (a)-(c) The temperature distributions of the reference group, without a thermal dome and 

with a thermal dome, respectively. 

For further quantitative analysis, the temperature data from a cross-section at 𝑧𝑧 = 8 cm (-20 
cm<𝑦𝑦 <20 cm) is imported. In order to directly reflect the temperature difference among the three 
groups, we define the dimensionless temperature 𝑇𝑇∗ = 100(𝑇𝑇 − 𝑇𝑇0)/𝑇𝑇0 , where 𝑇𝑇0  denotes the 
temperature of the reference group devoid of all the disturbance. As Fig.3 depicts, the group without 
thermal dome (green line) mismatches the reference obviously. In contrast, observing the group with 
dome (blue line), the values keep at 0 in the whole region outside the dome, confirming the powerful 
cloaking function of the thermal dome. No point on the green line is upon zero graduation line, which 
denotes the global influence of the introduction of the object. 

 
Figure 3: The graph of 𝑇𝑇∗ varying with 𝑦𝑦 coordinate. The green line denotes 𝑇𝑇∗ of the group 

without a thermal dome and the blue line denotes 𝑇𝑇∗ of the group with a thermal dome. 

We also analyzed different external temperature conditions. The calculation method of 𝜆𝜆𝑑𝑑  is 
derived based on the case that the top and bottom surfaces of the cuboid which represents background 
are at constant higher and lower temperature respectively, while the other four vertical surfaces are 
thermal adiabatic. However, as depicted in Fig.4, the calculation method is also applicable in other 
cases. Fig.4(a) depicts that we apply a uniform temperature gradient along 𝑥𝑥 direction instead of 𝑧𝑧 
direction. As shown in Fig.4(b) and Fig.4(c), the temperature field and isotherm distributions match 

139



the reference group as well. Applying a uniform temperature gradient along 𝑦𝑦 direction is in a 
similar way. 

 
Figure 4: (a) The application of the uniform temperature gradient along 𝑥𝑥 direction. (b) and (c) The 

efficacy of the thermal dome working in this different external temperature condition. 
Thanks to the assumption that the whole subface is at constant temperature, we could take the heat 

source into consideration. We discuss the problem in two ways. Case 1: the heat capacity of the 
material from where the dome and core region are based is big enough, or there are some devices like 
heat reservoir inside the core region. These two conditions assure that the temperature of the subface 
can keep constant within a period of time, which means this kind of case is no difference between the 
case mentioned above. Case 2: the thermal diffusivity of the material from where the dome and core 
region are based is big enough, which assures the temperature of the whole subface increases at the 
same rate and the time scale of it is much smaller than the conduction process in the background. 
Under this condition, we can still handle this question as a steady statement problem.  

Furthermore, the heat conductivity of the background is not always constant. To extend the 
applicable range of our thermal dome, we import effective medium theory as the theoretical 
foundation to modify the conductivity of the dome. The hemispherical shell structure of thermal 
domes makes it convenient to combine or split multilayer structures to obtain flexibly changed 
conductivities. As shown in Fig.5, we have proved the validity by simulating with and without the 
extra dome. We changed the parameter 𝜆𝜆0 from 15 W m-1 k-1 to 25 W m-1 k-1 and all the others stay 
constant. The conductivity of the newly added dome 𝜆𝜆𝑑𝑑′  is 80 W m-1 k-1 and its thickness is 1 cm, 
the same as the original dome (as depicted in Fig.5(a)). Fig.5(b) shows that the original dome loses 
its efficacy after the conductivity of the background has changed. By combining another thermal 
dome, obviously, the bilayer dome has rendered the temperature field back to normal. 
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Figure 5: (a) The structure of the updated bilayer thermal dome. (b) When the background changes, 
the original dome could not realize the function of cloaking. After introducing reconfigured dome, 

the goal of cloaking is realized again. 

4. Conclusions 
In this paper, we proposed a new scheme of thermal dome, offering a novel thermal management 

strategy through the concept of it. By directly solving the Laplace equation, we obtain the general 
solutions of the temperature field. With boundary conditions, we finally derive the formula of the 
conductivity of the dome. Compared to the conventional thermal cloak, the thermal dome offers a 
more open and adaptable structure. The semispherical core region allows the existence of different 
objects inside and is not fully closed with the subface not covered. Additionally, the design of 
hemispherical shell is beneficial for combining and splitting multilayer-structure. As a result, in face 
of various background conditions (which means various thermal conductivities), this kind of thermal 
dome could fit perfectly. Users can customize a dome according to the specific circumstance. 

Our numerical simulations by using Multiphysics COMSOL have demonstrated the efficacy of the 
thermal dome. Although we set the temperature of the whole subface as an isotherm boundary 
condition, we still discussed the feasibility in the realistic circumstance. With the help of thermal 
dome, we can easily control the heat conduction at will, achieving thermal invisibility. 

The successful implementation of the thermal dome offers more optional thermal management 
strategies. One potential direction is to explore the thermal dome which works when heat conduction, 
convection and radiation concurred. Another possible direction is to explore the feasibility of different 
shapes of thermal domes, which could extend the sphere of application. 

References 
[1] C. Z. Fan, Y. Gao, and J. P. Huang, Shaped Graded Materials with an Apparent Negative Thermal 
Conductivity, Appl. Phys. Lett. 92, 251907 (2008). 
[2] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Schrodinger’s Hat: Electromagnetic, 
Acoustic and Quantum Amplifiers via Transformation Optics, Proc. Natl. Acad. Sci. 109, 10169 
(2012). 

141



[3] Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, Temperature-Dependent 
Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes, Phys. 
Rev. Lett. 115, 195503 (2015). 
[4] Y. Gao and J. P. Huang, Unconventional Thermal Cloak Hiding an Object Outside the Cloak, 
EPL Europhys. Lett. 104, 44001 (2013). 
[5] J. Y. Li, Y. Gao, and J. P. Huang, A Bifunctional Cloak Using Transformation Media, J. Appl. 
Phys. 108, 074504 (2010). 
[6] S. Narayana and Y. Sato, Heat Flux Manipulation with Engineered Thermal Materials, Phys. Rev. 
Lett. 108, 214303 (2012). 
[7] T. Han, T. Yuan, B. Li, and C.-W. Qiu, Homogeneous Thermal Cloak with Constant Conductivity 
and Tunable Heat Localization, Sci. Rep. 3, 1593 (2013). 
[8] T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C.-W. Qiu, Experimental Demonstration of a 
Bilayer Thermal Cloak, Phys. Rev. Lett. 112, 054302 (2014). 
[9] X. Y. Shen and J. P. Huang, Thermally Hiding an Object inside a Cloak with Feeling, Int. J. Heat 
Mass Transf. 78, 1 (2014). 
[10] H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Ultrathin Three-Dimensional Thermal Cloak, Phys. 
Rev. Lett. 112, 054301 (2014). 
[11] X. Shen, Y. Li, C. Jiang, Y. Ni, and J. Huang, Thermal Cloak-Concentrator, Appl. Phys. Lett. 
109, 031907 (2016). 
[12] B. L. Davis and M. I. Hussein, Nanophononic Metamaterial: Thermal Conductivity Reduction 
by Local Resonance, Phys. Rev. Lett. 112, 055505 (2014). 
[13] J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J. R. Heath, Reduction of Thermal Conductivity 
in Phononic Nanomesh Structures, Nat. Nanotechnol. 5, 718 (2010). 
[14] X. Shen, C. Jiang, Y. Li, and J. Huang, Thermal Metamaterial for Convergent Transfer of 
Conductive Heat with High Efficiency, Appl. Phys. Lett. 109, 201906 (2016). 
[15] S. R. Sklan, X. Bai, B. Li, and X. Zhang, Detecting Thermal Cloaks via Transient Effects, Sci. 
Rep. 6, 32915 (2016). 
[16] L. Xu and J. Huang, Metamaterials for Manipulating Thermal Radiation: Transparency, Cloak, 
and Expander, Phys. Rev. Appl. 12, 044048 (2019). 
[17] G. Dai, J. Shang, and J. Huang, Theory of Transformation Thermal Convection for Creeping 
Flow in Porous Media: Cloaking, Concentrating, and Camouflage, Phys. Rev. E 97, 022129 (2018). 
[18] F. Yang, B. Tian, L. Xu, and J. Huang, Experimental Demonstration of Thermal Chameleonlike 
Rotators with Transformation-Invariant Metamaterials, Phys. Rev. Appl. 14, 054024 (2020). 
[19] Y. Peng, Y. Li, P. Cao, X. Zhu, and C. Qiu, 3D Printed Meta‐Helmet for Wide‐Angle Thermal 
Camouflages, Adv. Funct. Mater. 30, 2002061 (2020). 
[20] R. Hu, S. Zhou, Y. Li, D. Lei, X. Luo, and C. Qiu, Illusion Thermotics, Adv. Mater. 30, 1707237 
(2018). 
[21] L. J. Xu, S. Yang, and J. P. Huang, Effectively Infinite Thermal Conductivity and Zero-Index 
Thermal Cloak, EPL Europhys. Lett. 131, 24002 (2020). 
[22] L. Xu, J. Huang, T. Jiang, L. Zhang, and J. Huang, Thermally Invisible Sensors, Europhys. Lett. 
132, 14002 (2020). 
[23] R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, Experiments on Transformation 
Thermodynamics: Molding the Flow of Heat, Phys. Rev. Lett. 110, 195901 (2013). 

142



[24] Q. Ji, Y. Qi, C. Liu, S. Meng, J. Liang, M. Kadic, and G. Fang, Design of Thermal Cloaks with 
Isotropic Materials Based on Machine Learning, Int. J. Heat Mass Transf. 189, 122716 (2022). 
[25] Q. Ji, X. Chen, J. Liang, G. Fang, V. Laude, T. Arepolage, S. Euphrasie, J. A. Iglesias Martínez, 
S. Guenneau, and M. Kadic, Deep Learning Based Design of Thermal Metadevices, Int. J. Heat Mass 
Transf. 196, 123149 (2022). 
[26] W. Sha et al., Robustly Printable Freeform Thermal Metamaterials, Nat. Commun. 12, 7228 
(2021). 
[27] B. Peng, Y. Wei, Y. Qin, J. Dai, Y. Li, A. Liu, Y. Tian, L. Han, Y. Zheng, and P. Wen, Machine 
Learning-Enabled Constrained Multi-Objective Design of Architected Materials, Nat. Commun. 14, 
6630 (2023). 
[28] H. Chen, X. Tang, Z. Liu, Z. Liu, and H. Zhou, Predicting the Temperature Field of Thermal 
Cloaks in Homogeneous Isotropic Multilayer Materials Based on Deep Learning, Int. J. Heat Mass 
Transf. 219, 124849 (2024). 
[29] W. Sha, R. Hu, M. Xiao, S. Chu, Z. Zhu, C.-W. Qiu, and L. Gao, Topology-Optimized Thermal 
Metamaterials Traversing Full-Parameter Anisotropic Space, Npj Comput. Mater. 8, 179 (2022). 

 
  

143



1. 页面设置： 

(1)页边距：上：2.54cm，下：2.54cm，左：3.17cm，右：3.17cm 

(2)纸张：A4 

(3)版式：节的起始位置：接续本页，页眉：1.25cm，页脚：1.25cm，垂直对齐方式：顶端

对齐 

(4)文档网格：无网格 

2. 题目：Times New Roman，小二，加粗，左对齐，段前 24磅，段后 18磅。 

3. 作者姓名：小四，加粗，左对齐，段后 12磅。 

4. 地址和邮编：10，两端对齐，斜体，无段前段后。 

5. 关键词、摘要：10，两端对齐，段前 12磅，段后 12磅，Keywords, Abstract后为“：”，

并字体加粗，斜体。 

6. 一级标题：10，加粗，两端对齐，段前 18 磅，段后 12 磅。编号使用样式为 1.,2.……，

与下段同页，段中不分页。 

7. 二级标题： 10，加粗，斜体，两端对齐，段前 12 磅，段后 12 磅。 编号使用样式为

1.1,1.2……，与下段同页，段中不分页。 

8. 三级标题： 10，加粗， 斜体， 两端对齐，段前 6 磅，段后 6 磅。编号使用样式为

1.1.1,1.1.2…… 

9. 正文：10，首行缩进 0.5cm，段后 6磅，单倍行距。 

10.参考文献：10，两端对齐，斜体。 

11.表头、图示：字号 10，居中，斜体，段前 6磅，段后 6磅。图片版式为嵌入型，无格式。

表格对齐方式：居中，文字环绕：无。 

12.公式：右对齐，段前 6磅。段后 6磅。 

13.所列参考文献需要在文中标注引用 

 

144




